Kuwait University MATH 102 June 14, 2009

Math. Dept. Final Exam Duration: two hours
Calculators and mobile telephones are not allowed.
Answer the following questions.

1. (4 pts) Let f(z) = €2 +¢, z>0.
(a) Show that f is one-to-one.

(b) Find the inverse function f~%.

(c) Find the domain of f~*.

" . sin"*(cosz)

3. (4+4+4 pts) Evaluate the following integrals

@ [ %czx ® [ ‘/%_\/Edm © [etnE+na

4. (3 pts) Determine whether the following improper integral is convergent or divergent, if convergent, find its value

=k

5. (4 pts) Find the centroid of the region bounded by the curves y = z* and z = 2.

6. (4 pts) Consider the circle r = sin#.
(a) Find the intersection points of the circle and the line § = E
(b) Find the points on the circle, where the tangent line is parallel to the line y = 2.

7. (3 pts) Find the length of the polar curver =62, 0<0<.

8. (3 pts) Find the surface area generated by rotating the parametric curve
z=cost+sint, y=sint—cost, 0<t<m/2 around the y-axis.

9. (2 pts) Show that the polar equation r = 2sin @ + 4 cos § represents a circle. Find its center and radius.

10. (3 pts) The graphs of the polar equations r = sinf + cos and r = 1 are shown below. Find the area of the
region inside both circles.
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1. (a) f'(x) =2e®* 4+ ¢e® >0 = f is increasing = f is one-to-one.
(b) y= e +e" = (") e —y =0 ¢ = T = f71(g) = In(—H{IHE).

(¢) Dy = Ry = [£(0), lim f(x)) = [2,00).
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2. The limit is of the form 5, so by L’Hospital’s Rule
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3. (a) Let u = cos3z = du = —3sin 3z dz, then
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3 % 1
/ —4/u —1)? 4(3—2§+u)+c—4[(1+gf) —2( ﬂﬂ + (1+ Va)z] +

(c) By parts: take u = In(e® + 1), dv =e~3, then
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so the improper integral is divergent.

5. The region is symmetmc about the line y = z, so the centroid is on the line y = x and T = 7.
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and the centroid is (Z,7) = (55, 25)-

6. (a) The two intersection points are (@, %) and the pole.

(b) For r = sinf the parametric equations are x — %Sin 20, y = sin® 0. Hence
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and 6 = T or 5, that is the points are (sin g, §) and (sin 57, 57).
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8. Let x = cost +sint, y = sint — cost, 0 < ¢t < w/2. Then
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9. r =2sinf +4cosf = r? = 2rsinf + 4rsind, then 2 + y? = 2y + 42 and completing the square
(x —2)2 + (y — 1) = 5, so the center of the circle is (2,1), the radius is v/5.

10. The region consists of a quarter of the big circle and two pieces under the small circle, so
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Another solution: The radius of the small circle is %57, its area is 7, then
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